(1) Container

AWS - INSTALLATION &
CONFIGURATION GUIDE

GENERATED BY: Cloudockit

Contents

INEFOAUCTION .t sttt et e bt e bt e s bt e sat e et e et e e bt e beesbeesaeeeaseeabeenbeesaeesanenas 4
Y=o (U1 =T 0 aT=T] K PPPPPPPPPPPPPRY 6
Step A-Elastic — Provision Cloudockit Container (hosted on Elastic Beanstalk).........ccccecvviviiencieeeiieeccienens 7
STEP 0 — Create a S3 Bucket and upload the [ICENSEcuuviiiiciiiiiciec e 7
STEP 1 — Upload docker configuration file...........coocuuiieiiciiii i 7
STEP 2 - Creating POIICY .. .uuiiiieiiiie ettt ettt e e e e e ettt e e e et a e e e e eataeeeeasaeeeentaeeesansaeeesansseeesansrneanan 7
Y e R O =T Y o T= g 2 (o] 1R 7
STEP 4 - Creating Application Beanstalk Configuration File and upload itcooeeeeiveeeeeiiiiiiiiiiieeee e, 8
STEP 5 - Creating Application BEANSTAIKcccuiiiiiiiiiiecceee ettt e e 8
STEP 6 — Validate Service is Up & RUNNINGuviiiiiiiie ettt ettt e e e satae e e saaae e e eeabaeeesnnnaeeaens 8
Step A-ECS — Provision Cloudockit Container (hosted on ECS/Fargate)cccceeeeeeeeieeecieeecveeecreeeeveeeeveeenns 9
STEP 0 — Create a S3 Bucket and upload the [ICENSEuviiieeiiieeeee e 9
STEP 1 — Create an AWS Secret in SECRET MANAGER to store information to connect to Cloudockit
(o]0} =Y [T=T gl 0= o o 1] o] VA U P PO ST UP PR 9
STEP 2 - Creating Policy t0 @aCCESS the SECIET......coccuiiiieeieee ettt et e e et e e e rae e e e e aaeeaean 9
STEP 3 - Creating Role assumed by ECS tasks to access the Secret.......ccoeeeecieeccciiee e, 10
STEP 4 - Creating VPC and Subnet + Open required POrtS......cccuieeicieeeiiiiieeecieeeeeieee e sree e e sereee e 10
STEP 5 - Creating SECUNITY GrOUP ..cciiiiiiiiiiiiiieeee e iesiiiitteee e e e s ssitreeteeesssssibaaaeeeesssssssssssaaeeessssssssenneeeesssnnns 10
STEP 6 - Creating the Task Definition Filec..eoo i et 10
ParaMBELEIS .. e e s e s 10
ENVIrONMENT VAriablescoeeiiiiiiiieieee ettt 10
STEP 7 - Creating the Task DefinitioNn......c...uuiiiiiiiciee et e e 11
STEP 8 - Creating the cluster and register Task Definition........cccceeciieiicciic e, 11
STEP 9 — Validate Service is UP & RUNNING ...cocii ittt e ettt e e e e e e e avrae e e e e e e s e snnreaneeeaeeenas 11
Step B (Optional) — Configure Cloudockit WED Ulccuuiiieiiiee ettt ettt 13
Step C (Optional) — Configure Cloudockit Container to support Scheduling.cccccveveeieiieeicieeecieeenee, 18
Start Cloudockit Scheduler CONtAINEToociiiieeee et 18
Set Settings in the SETHINGS filE ... et e et e e e e abe e e e e eateeas 18

INSTALLATION & CONFIGURATION GUIDE 2

Step D (Optional) — Configure Cloudockit Container to support the creation of Compliance Rules,

Tailored Diagrams and SETLINESuiiiiiiiiiiiiee et e e s e e e s abe e e e sbbeeeessraeesenabenessnasenas 19
Create (or re-use) an Azure COSIMOS DB........c.uiiiiiiiiie e e ccee st e eeee e see s teeesree e s steeessseesnseeesaeesaseeanns 19
Configure Cloudockit Container to use the Azure CoOmMOS DB.........cccuevieeiiieeeiiieee e e e 21

Step E — Understand Cloudockit AP CONTAINETveeeiiciiieeeciieee ettt ettt e et e e e et e e e evaaee e sreaeeesntaeeesanes 22

Y A=Y o e WY Yo 10l [ol =T o 1Y YR URPRNt 23
Activate and setup components for YoUr ICEBNSEuviiiieiiii it 23

Step G — Validate that you can authenticate to the environment that you want to scancccccoeeuuuee 24

Step H—Test the doCUMENT GENEIALIONcccciiiie et e et e e e et e e e ebe e e e eeraeeeeeanes 26

Step | —Manage your doCUMENT SENEIATIONccicciiieeiciiiieecceee et e et e e eectte e e e e tte e e e ereeeeeebeeeeeereeeeeennes 27
J AR 1D o ol¥ g g Y= o f L CT=Y g L= =1 o] o OO 27
/StOPDOCUMENTGENEIALION ...viiuieeiiectieeiieete e eteeteesteesteeetbestbeetbe e beesteesaeestsesabesabeenbeenteessesssessseenseensens 27

Annex — Deploy multiple instances of Cloudockit CONtainer.........coocvuviiiiiiiieecciee e 28
Step 1 — Create / Configure AzUre KeY VauUltccuoiiiiicciiiicee ettt et e 29
Step 2 — Configure AZUre Redis CAChEoiiieiiiie et et e s e trae e e nreeas 30
Step 3 — Define the Environment Variables required to run the Cloudockit Container.........cccccceeennn. 30

ANNEX - AWS CONTAINET USE-CASES .nuvviieeiiiieeeeiieeeeeitiee e ettt eessitteessneeeessanseeeesnreeessanseeeesanneeessanseeeesannneeenan 33
INEFOAUCTION .ttt et sh e s at e et e bt et e e sb e e saeesab e st e et e e b e e bt esbeesaeeeneeentean 33
AWS ECS CONTAINEGT «..eiiiiiitiee ettt ettt st e s e s s e e e s s e e s s b e e e s s emre e e s smreeesemreees 33

A — Scanning multiple AWS accounts using Cross-AcCOUNT rOlE.......cc.ueeeeiiiieeeiiiiie e e 33

B — Using the container with the ECS Task Role instead of IAM user keys......ccccccoeeeevcieeeviceee e, 35
C—Running a scheduled scan in AWS using ECS CONtAINEr........ccovciieiiiciiee e 38
CONTAINET AETAIIS ...eenteeeie ittt ettt e bt e s ht e s at e st e e bt e be e beesbeesabesateebeesbeesbeesneenas 41
ENVIrONMENT Variables.ottt sttt b e st st st e be e e 41

[0 == 1 = 42
ANNEX — TrOUDIESNOOTING .. .veiiiiiiee e e e e e e et e e e s ataeeessasbeeeesnsseeessnssaeeens 43

INSTALLATION & CONFIGURATION GUIDE 3

Introduction

The purpose of this document is to provide the detailed steps to run and configure Cloudockit Docker
container image.

There are two types of images that you should run:

o cdk-web-linux that contain the Cloudockit API/Web interface. This is mandatory to run this
container.

o cdk-scheduler-linux that contain the Cloudockit Scheduling features. This is an optional
container you do not need to install if you do not want to use schedules.

The cdk-web image contains the Cloudockit API that you can call from your CI/CD processes or any other
process / scenario which fits your business needs.

In addition to the API, we have integrated the complete Cloudockit Web Ul in the image so that you can
get all the features that you are accustomed to.

Cloudockit Docker container images provide you a way to run Cloudockit into your own isolated Cloud
environment and gives you the exact same features as Cloudockit Website and Cloudockit Desktop.

Here is the high-level overview of the solution :

§:] Contaim_er
Cloudockit - |)

R Yoo oo N EREETELEE Wo-omo---- Voo
R ceee Azure aws) GoogleCloud vmware Hyper-V
i 0 o ! = = = = =

! ECS ACl Excel Word Visio PDF

The following hosting environments are currently supported:

e Web App for Containers on Azure - Recommended
e ECS (Elastic Container Services) Fargate on AWS

e ACI (Azure Container Instance) on Azure

e GKE (Google Kubernetes Engine) on GCP

A few important things to note:

e These configurations are for the hosting of the container, not for the environment that you scan
which means that you can scan a GCP project using the Cloudockit Container APl even if the
container runs on Azure.

INSTALLATION & CONFIGURATION GUIDE 4

Depending on the hosting option that you choose, there could be some limitations. Those
limitations are related to the hosting option and not the Cloudockit Container itself. As an
example, ACI currently does not yet support private networking (virtual networks) for Windows
Based Container.

The current document does not detail networking configuration like isolation/https setup as this
is highly depending on your internal setup.

Container is currently designed to have one node running which should be more than enough to
generate all your documents you need.

For production environment, we recommend 4vCPU + 8 Gb RAM

Cloudockit Web Ul only supports Azure AD as SSO authentication. If you do not set it up, you will
only be able to access the API portion.

The following sections contains the different steps to deploy the Cloudockit Docker container image on
the AWS Platform.

Here is an overview of the different steps you must do to deploy Cloudockit Container:

Step A - Deploy Cloudockit Container (cdk-web)

e This Step is subdivided in 8 Different steps
* Those steps have been scripted to ease deployment process so we strongly

advice to use the scripted approach

Step B (Optional) - Activate Cloudockit Container Ul

e Create an Azure AD Application

Step C (Optional) - Activate the Scheduling feature (cdk-
scheduler)

e Set the appropriate settings to activate scheduling

Step D ... - Do some tests

e Test the license validity
e Start some documentation

INSTALLATION & CONFIGURATION GUIDE 5

Requirements

To install Cloudockit Container in your environment, you will need:

A S3 Bucket

A Secret Manager to store the secret to pull the image from Cloudockit Repo.
A Role / Policy to access the Secret.

A VPC/Subnet to host the ECS Cluster.

A ECS Cluster (Fargate)

O Note that this is the recommended approach as this is the one we have scripted but it
does not mean that we do not support other types of deployment like AKS or other as
Cloudockit Container is a standard plain container.

(Optional) An Azure Active Directory Application if you want to activate Cloudockit Container
Web Ul

Important note

We highly recommend that you use the script (based on AWS CLI) provided by Cloudockit
Team to provision/test Cloudockit Container.

INSTALLATION & CONFIGURATION GUIDE

6

Step A-Elastic — Provision Cloudockit Container (hosted on Elastic
Beanstalk)

STEP O — Create a S3 Bucket and upload the license

To run Cloudockit Container, you need to have a S3 Bucket that will be used to store information
(license file, settings...). As the license file is linked to this S3 bucket, you need to choose a container
Name and send that name to Cloudockit Support Team (support@cloudockit.com) so that we generate a
license file.

Once you receive your licensefile, you can create the bucket and upload the license file into a file named
cloudockitinternal/license.json in the container.

Please note that the json license file is tied to the S3 Bucket name so you need to create/use an S3
Bucket with a name that matches the name provided to Cloudockit Support Team.

Code extract
Refer to STEP 0 in the provided script for Elastic Beanstalk.

STEP 1 — Upload docker configuration file

In this step, you need to upload the .dockercf required for the Cloudockit Repository authentication into
the S3 bucket you have created.

Code extract
Refer to STEP 1 in the provided script for Elastic Beanstalk.

STEP 2 - Creating Policy

In this step, you need to create the policy to read the .dockercfg file created previously.

Code extract
Refer to STEP 2 in the provided script for Elastic Beanstalk.

STEP 3 - Creating Role

Once the policy has been created, we need to create a Role attached to that policy so that EC2 assume
the role to be able to pull the remote image.

The role needs to have the Allow Effect and needs to have the action sts:AssumeRole for the service ec2
amazonaws.com and access to the bucket to download the .dockercfg file.

Code extract
Refer to STEP 3 in the provided script for Elastic Beanstalk.

INSTALLATION & CONFIGURATION GUIDE 7

mailto:support@cloudockit.com

STEP 4 - Creating Application Beanstalk Configuration File and upload it

In this step, we create a Json file that contains the configuration of the application that needs to be
created with the appropriate settings.

Code extract
Refer to STEP 4 in the provided script for Elastic Beanstalk.

STEP 5 - Creating Application Beanstalk

In this last step we create the Application and the environment.

Code extract
Refer to STEP 5 in the provided script for Elastic Beanstalk.

STEP 6 — Validate Service is Up & Running
From the AWS Console, navigate to the application and open the environment.

You should see the Cloudockit Container running:

& > C A Notsecure | 18222227122

E"éloudockit Pricing Demo User Guide

Container

How would you like to use Cloudockit ?

Please specify your Azure AD information.
This is required to use Cloudockit Container Web Ul.

{. 5 } Intcractive REST API

d using the Cloudackit Services,
the terms of this Agreement

INSTALLATION & CONFIGURATION GUIDE 8

Step A-ECS — Provision Cloudockit Container (hosted on ECS/Fargate)

STEP O — Create a S3 Bucket and upload the license

To run Cloudockit Container, you need to have a S3 Bucket that will be used to store information
(license file, settings...). As the license file is linked to this S3 bucket, you need to choose a container

Name and send that name to Cloudockit Support Team (support@cloudockit.com) so that they generate

a license file.

Once you receive your license file, you can upload the license file into a file named
cloudockitinternal/license.json.

Please note that the Json license file is tied to the S3 Bucket name so you need to create/use an S3
Bucket with a name that matches the name provided to Cloudockit Support Team.

Important note

Ensure that the Storage Account exists in your environment before sending it to the
Cloudockit Support Team.

Code extract
Refer to STEP 0 in the provided script for ECS Fargate.

STEP 1 — Create an AWS Secret in SECRET MANAGER to store information to connect to
Cloudockit Container Repository

In this step, you need to create a Secret that will contain the information to connect to Cloudockit
Container Registry so that your ECS can pull the image.

Secret should contain username and password properties, see code for reference.

Code extract
Refer to STEP 1 in the provided script for ECS Fargate.

STEP 2 - Creating Policy to access the Secret
Once you have created the secret, you need to create a policy that will allow access to the secret.

The policy needs to provide Allow Effect to the action secretsmanager:GetSecretValue to the secret
previously created.

Code extract
Refer to STEP 2 in the provided script for ECS Fargate.

INSTALLATION & CONFIGURATION GUIDE

9

mailto:support@cloudockit.com

STEP 3 - Creating Role assumed by ECS tasks to access the Secret

Once the policy has been created, we need to create a Role attached to that policy so that ECS assumes
the role to be able to pull the remote image.

The role needs to have the Allow Effect and needs to have the action sts:AssumeRole for the service
ecs-tasks.amazonaws.com

Code extract
Refer to STEP 3 in the provided script for ECS Fargate.

STEP 4 - Creating VPC and Subnet + Open required ports

In this step, we need to configure a VPC, a Subnet, and a Route Table so that the subnet is reachable and
so that the subnet has connectivity to the Internet to pull the image. Please note that you can use an
existing VPC if it has the appropriate requirements.

Code extract
Refer to STEP 4 in the provided script for ECS Fargate.

STEP 5 - Creating Security Group

To Secure the deployment, we create a security group with only port 80 open (please use https/443 for
Production usage)

Code extract
Refer to STEP 5 in the provided script for ECS Fargate.

STEP 6 - Creating the Task Definition File

Once networking configuration is done, we need to create a task definition file that contains the
following information.

Parameters
Name Value
family Cloudockit
executionRoleArn arn:aws:iam::<accntnumber>:role/ecsTaskExecutionRole
networkMode Awsvpc
requiresCompatibilities Fargate
ContainerDefinitions Should refer to the image and the secret to access it

Environment variables

Name Value
ApplnsightKey (optional) An Azure App Insight Instrumentation Key for advanced
login

INSTALLATION & CONFIGURATION GUIDE 10

Name Value

DockerStorageCloudProvider Specify if your Storage Account is stored in Azure, AWS
or GCP.
Possible values are:
e Azure
e GCP
e AWS (select this value)
DockerStorageAWSBucketName Enter the name of the S3 Bucket
DockerStorageAWSAccessKeyld (option 1) Enter the Access Key Id for Full control of the AWS S3
Bucket
DockerStorageAWSSecretAccessKey Enter the Secret Access Key for Full control of the AWS
(option 1) S3 Bucket
DockerStorageUseAwsRole (option 2) True
(permissions are provided by the ECS that hosts the
container)
DockerStorageUseAwsGov (optional) Specify "True" if you are using Aws Gov Cloud or

"False" otherwise.
If the variable is not present, it’s "False" by default

=> Note: parameters noted as option 1 and 2 are mutually exclusive

Code extract
Refer to STEP 6 in the provided script for ECS Fargate.

STEP 7 - Creating the Task Definition
Then, from the Task Definition file, we just create a task definition:

Refer to STEP 7 in the provided script for ECS Fargate.

STEP 8 - Creating the cluster and register Task Definition.

Last step is to create a cluster and start the service:

Refer to STEP 2 in the provided script for ECS Fargate.

STEP 9 — Validate Service is Up & Running
From the AWS Console, navigate to the cluster, tasks and then click on the public IP to open it.

You should see Cloudockit Container running:

INSTALLATION & CONFIGURATION GUIDE 11

&j"éloudockit Pricing Demo User Guide

Container

How would you like to use Cloudockit ?

Please specify your Azure AD information.
This is required to use Cloudockit Container Web UL

{. 5 } Interactive REST API

By accessing and using the Cloudockit Services,
you agree to the terms of this Agreement.

INSTALLATION & CONFIGURATION GUIDE 12

Step B (Optional) — Configure Cloudockit Web Ul

Cloudockit Container supports a Web Ul that allows users to authenticate by using Azure AD or Azure
User Authentication.

This Web Ul supports Azure Active Directory as a first step to authenticate users.

Once connected, you will be able to connect to Azure, AWS and GCP using Service Accounts (Azure AD
App, GCP Service Credentials, AWS Access Keys).

To activate Azure AD Authentication, you need to follow these steps:

e Go to your Azure Active Directory
e Click on App Registration and then click New Registration
e Enter a Name (any name you want) and select Single Tenant

e Enter the following redirect URIs (reply url):
o https://<AppSvcName>.azurewebsites.net/LogIntoAzure/CatchCodeAzure
o https://<AppSvcName>.azurewebsites.net/LogIntoCDKWithAAD/CatchCode

where AppSvcName is the name of your App Service

Register an application - X

* Mame

The user-facing display name for this application (this can be changed later).

Cloudockit Web UI -

Supported account types

Who can use this application or access this APIZ

'@] Accounts in this organizational directory only (beauperindev only - Single tenant)
O Accounts in any organizational directory (Any Azure AD directory - Multitenant)

O Accounts in any organizational directory (Any Azure AD directory - Multitenant) and personal Microsoft accounts (2.g. Skype, Xbox)

O Personal Microsoft accounts only

Help me choose..

Redirect URI (opticnal)

We'll return the authentication response to this URI after successfully authenticating the user. Providing this now is optional and it can be
changed later, but 2 value is required for most authentication scenarios.

Wwebh % | | }*ttps:,e‘,e‘cor‘toso.azure\«rebsitesnetfujgIr‘toAzJre;'(atchiocle;!nzure v

Register an app you're working on here. Integrate gallery apps and other apps from outside your organization by adding from Enterprise
applications.

By proceeding, you agree to the Microsoft Platform Policies =

INSTALLATION & CONFIGURATION GUIDE 13

Note: the interface will not let you enter the 2" URL before clicking on Register so you'll have to enter it
after registration, in the Authentication page:

3 CloudockitWebUl | Authentication =

‘)3 Search ‘ « &7 Got feedback?

1B overview . i
Platform configurations

& Quickstart

. } Depending on the platform or device this application is targeting, additional configuration may be required such as
Integration assistant redirect URIs, specific authentication settings, or fields specific to the platform.
Manage + Adda platform

B2 eranding & properties

D Authentication ~ Web Quickstart Docs) [l
T Certificates & secrets Redirect URIs
ill Token configuration The URIs we will accept as destinations when returning suthentication responses (tokens) after successfully authenticating or signing out users. The redirect URI you

send in the request to the login server should match ane listed here. Also referred to as reply URLs. Learn mare about Redirect URIs and their restrictionsf!
-2 AP| permissions

& Expase an API https:// s Bl s il i mesliie e B/ OGINtOAZUrE/CatchCodeAzure m

https://me - o o B msimeall ol ol /LogIntoCDKWithAAD/CatchCode ‘]E[

HL App roles

& Owners

Roles and administrators

INSTALLATION & CONFIGURATION GUIDE 14

Then, go to APl Permissions, click on +Add a permission and select :

- Microsoft Graph, then Delegated permissions and then select User.Read:
- Azure Service Management, then Delegated permissions and then select user_impersonation:

Request API permissions

C All APls

@ Microsoft Graph
https://graph.microsoft.com/ Docs

What type of permissions does your application require?

Delegated permissions

Your application needs to access the APl as the signed-in user.

Select permissions

Application permissions
Your application runs as a background service or daesmon without a
sighed-in user,

expand all

I,O user.read

e

o The "Admin consent required” column shows the default value for an organization. However, user consent can be customized per
permission, user, or app. This column may not reflect the value in your organization, or in organizations where this app will be

used. Learn more

Permission

> IdentityRiskylUser

~ User (1)

User.Read (@
Sign in and read user profile

User.Read.all @
Read all users' full profiles

User.ReadBasic.all (@
Read all users' basic profiles

User.ReadWrite (D
Read and write access to user profile

L
L
L

Add permissions Discard

Admin consent required

No

Yes

No

INSTALLATION & CONFIGURATION GUIDE 15

Click Add permissions. You should now see the following :

() Refresh Q Got feedback?

o The "Admin consent required” column shows the default value for an organization. However, user consent can be customized per permission,
will be used. Learn more

Configured permissions

Applications are authorized to call APIs when they are granted permissions by users/admins as part of the consent process. The list of con
all the permissions the application needs. Learn more about permissions and consent

-+ Add a permission /' Grant admin consent for UMAknow Solutions DEV Inc
API / Permissions name Type Description Admin consent req...

~ Azure Service Management (1)

user_impersonation Delegated Access Azure Service Management as organization use... No
“ Microsoft Graph (2)
User.Read Delegated Sign in and read user profile No

To view and manage permissions and user consent, try Enterprise applications.

Then, click on Grant Admin consent for Default Directory (if you don’t have the permissions to click on
Grant admin consent, please contact your IT admin to do it for you):

Configured permissions

Applications are authorized to call APIs when they are granted permissions by users/admins as part of the consent process. The list of configured permissions should include
all the permissions the application needs. Learn more about permissions and consent

-+ 4dd a permission ~ Grant admin consent for Default Directory

APl / Permissions name Type Description Admin consent req... Status
W Microsoft Graph (2) e
User.Read Delegated Sign in and read user profile - @ Granted for Defoult Dire,, ==+

INSTALLATION & CONFIGURATION GUIDE 16

Then, take note of the client ID from the Overview tab and then go to Certificates & Secrets and
generate a new Client Secret, take note of it.

Client secrets

A secret string that the application uses to prove its identity when requesting a token. Also can be referred to as application password.

Mew client secret

Description Expires Value 1D

Mo client secrets have been created for this application.

Update the settings file from your storage account (in the cloudockitinternal folder) with the value of
the previously created Azure AD Application:

{

"AzureADTenant": "mytenant.onmicrosoft.com",
"AzureADAppID": "zzzzz",

"AzureADAppKey": "zzzzz"

}

INSTALLATION & CONFIGURATION GUIDE 17

Step C (Optional) — Configure Cloudockit Container to support
Scheduling.

Cloudockit Container supports a Scheduling Web Ul that allows users to choose when they want to
schedule the document generation.

To activate scheduling, you need to spin-up a new container based on the cloudockitscheduler image
and set the appropriate settings in your settings file.

Start Cloudockit Scheduler Container

You need to follow the same procedure as you did in the previous step to spin up a new Scheduling
container. You need to use the cloudockitscheduler image. This scheduler is basically reading the
schedules files created from the Ul and calling the API according to the schedule.

Here are the settings for the container:

e CPU:1+

e RAM:1.5GB+

e No inbound networking is required

e Qutbound networking needs access to the storage account where the settings are stored and
the APl URL where Cloudockit is deployed.

e The following 3 environment variables are required:

Name Value
DockerStorageCloudProvider Specify if your Storage Account is stored in Azure, AWS or GCP.
Possible values are:

e Azure

e GCP

e AWS
DockerStorageAWSBucketName Enter the name of the Bucket
DockerStorageAWSAccessKeyld Enter the Access Key Id for Full control of the AWS S3 Bucket
DockerStorageAWSSecretAccessKey Enter the Secret Access Key for Full control of the AWS S3 Bucket
DockerStorageUseAwsGov (optional) Specify "True" if you are using Aws Gov Cloud or

"False" otherwise.
If the variable is not present, it’s "False" by default

Set Settings in the settings file

To activate the scheduling, you need to update the settings file from your storage account (in the
cloudockitinternal folder) to specify the URL of your Cloudockit Container:

{
"DockerUrlForSchedulingStarts™ : "https://mycloudockitcontainer"

}
This information will be used by Cloudockit Scheduling feature to specify which Web API to call.

INSTALLATION & CONFIGURATION GUIDE 18

Step D (Optional) — Configure Cloudockit Container to support the
creation of Compliance Rules, Tailored Diagrams and Settings
Cloudockit Container supports the creation of new Compliance Rules, new Tailored Diagram and new

Settings.

This feature requires that you deploy an Azure Cosmos DB to save the Compliance Rules and Tailored
Diagrams.

There are two steps required:

o C(Create (or re-use) an Azure Cosmos DB
e Add environment variables to the Cloudockit Container to specify which Azure Cosmos Database
to use

Create (or re-use) an Azure Cosmos DB

From the Azure Portal, create a new Cosmos DB: (you can skip those steps if you already have a Cosmos
DB that you want to reuse)

e (Create a Cosmos DB

e e

Home » Create a resource > Marketplace >

Azure Cosmos DB =

Microsoft

y Azure Cosmos DB W Remove from Favorites
* Microsoft | Azure Service

* 3.7 (748 ratings)

Plan

Azure Caosmos DB N |

Overview Plans Usage Information + Support Ratings + Reviews

Azure Cosmos DB is a fully managed, globally-distributed, horizontally scalable in storage and throughput, multi-medel database service backed up by comprehensive SLAs,
Azure Cosmos DB was built from the ground up with global distribution and horizontal scale at its core — it offers turn-key global distribution across any number of Azure
regions by transparently scaling and replicating your data wherever your users are. You can elastically scale throughput and storage worldwide and pay only for the
throughput and storage you need. Cosmos DB guarantees single-digit millisecond latencies at the 99th percentile anywhere in the world, offers multiple well-defined
consistency models to fine-tune for performance and guaranteed high availability with multi-homing capabilities — all backed by industry leading service level agreements
(SLAS).

INSTALLATION & CONFIGURATION GUIDE 19

e Choose Azure Cosmos DB for NoSQL for the type

Create an Azure Cosmos DB account

Which API best suits your workload?

Azure Cosmos DB is a fully managed NoSQL and relational database service for building scalable, high performance applications. Learn more

To start, select the APl to create a new account. The API selection cannot be changed after account creation.

Azure Cosmos DB for NoSQL Azure Cosmos DB for PostgreSQL

Azure Cosmos DB's core, or native AP| for working with Fully-manzaged relational database service for PostgreSQL with
documents, Supports fast, flexible development with familiar distributed query execution, powered by the Citus open

SQL query language and client libraries for NET, JavaScript, source extension. Build new apps on single or multi-node
Python, and Java. clusters—with support for JSONE, geospatial, rich indexing,

and high-performance scale-out.

Create Learn more Create Learn more

Azure Cosmos DB for Apache Cassandra Azure Cosmos DB for Table

Fully managed Cassandra database service for apps written for Fully managed database service for apps written for Azure
Apache Cassandra. Recommended if you have existing Table storage. Recommended if you have existing Azure Table
Cassandra workloads that you plan to migrate to Azure storage workloads that you plan to migrate to Azure Cosmos
Cosmos DE. DB.

Once the Cosmos DB is created, you need to create a new Database named cloudockit :

New Database i

% Overview

* Database id ©

Welcome to Cosmos DB

Globally distributed, multi-model database service for any scale

@ Activtylog

B Access control (k)
& o

& Diagnose and solve problems

& Quickstart

Notifications + Start with Sample New Container

@ Data Explorer g [P ———. Cratn 4 corcainun o sncrage nd
+ cowmcsoe + oo

Settings

@ Features

= Detault consistency Common Tasks Recents Tips

@ Backup & Restore

a
Y Firewall and virtual networks L+

New Database Oata Mg
Jy Private Endpoint Connections
@ cons - |

@ Dedicated Gateway

Keys
@ pdisor Recommendations
4 add Azure Cognitive Search
% Add Azure Function

@ advanced security (praview)

B 1o =]

INSTALLATION & CONFIGURATION GUIDE 20

Configure Cloudockit Container to use the Azure Comos DB

To ensure that the container can connect to the Database, you need to start the container and specify
the following 2 required environment variables:

Name Value

CosmosDb__DatabaseName Enter the name of the Database that you have created in
the previous step (cloudockit in the example)

ConnectionStrings__CosmosDb Azure CosmosDB Connection string

INSTALLATION & CONFIGURATION GUIDE 21

Step E — Understand Cloudockit API Container

Once you have installed the Cloudockit Container, you can navigate to the Container Home Page and
you will see the following screen.

It gives you the option to test the different endpoints offered by Cloudockit API.

Please note that you can do everything from command lines/scripts and not use the interface if you
prefer.

Cloudockit API - v 16.2.0.27680

Test out the functionality of Cloudockit APl with this interactive Ul. This page also includes full endpoint descriptions for all
endpoints.

‘ _ /StartDocumentGeneration Sends settings to start document generation.

‘ _ /TestAuthentication Sends settings to validate authentication.

‘ _ /CheckLicenseStatus Validate the current license status.

‘ _ /ListDocumentGeneration List the document generation currently running.

‘ _ /StopDocumentGeneration Stop a document generation currently running.

‘ Properties - Documentation

For simplicity of usage, all the endpoint are POST endpoints. Not all settings are mandatory for each
endpoint, and you can refer to that section to see which endpoints require which parameters.

INSTALLATION & CONFIGURATION GUIDE 22

Step F —Test your license

Activate and setup components for your license

Once you get the APl Key from Cloudockit team and you have the appropriate credentials for the license
validation, you can check that your API Key is working by using the /CheckLicenseStatus endpoint.

First, navigate to the home page of the container and click on CheckLicenseStatus and Try it now. Then,
replace the following values in the JSON that you are sending to Cloudockit API:

{
"ApiKey": "API Key provided by Cloudockit Team"

Click on Execute.

You should receive the following response body:

{
"data™: {
"licenselsValid™: true

¥
b

INSTALLATION & CONFIGURATION GUIDE 23

Step G — Validate that you can authenticate to the environment that you

want to scan

Once the license validation is successful, you need
you want to scan is working.

To do that, you need to use the /TestAuthenticat

to test that the authentication to the environment

ion endpoint.

First, you need to ensure that you specify the values from the above Step 2 for license validation.

Then, you need to specify the following additional values:
Name Value
ADKCloudType Azure/AWS/GCP depending on the platform that you

SubscriptionID

(for AWSAccessKeyld

AWS) | AWSSecretAccessKey

(for TenantID

Azure) | AppClientldForAutomation
AppClientKeyForAutomation

(for GCPServiceAccountCredentials

GCP)

AzureStorageNameForDropOff

Example of Payload for an AWS environment scan:

{
"ApiKey": "xxxx",
"AWSAccessKeyId": "XXXX",
"AWSSecretAccessKey": "8PoB
"SubscriptionID": "34XXXX2"
"AzureStorageNameForDropOff
"ADKCloudType": "AWS"

want to scan.

Id/Alias of the subscription (Azure) or account (AWS)
or project (GCP) that you want to scan.

AWS Access Key

AWS Secret Access Key

Tenant name of the Azure Subscription to scan

AAD App ID for the scan

AAD App Key for the scan

Content of the JSON Service Credential file

Do not change the name of the parameter for AWS,
this is also called AzureStorageNameForDropOff
You should specify one of these values:

e the Azure Storage Account Name (it can be the
unique Storage Account name that is in the
same tenant as the subscription that you scan
or the complete Azure Storage Account
Connection String)

e AWS S3 bucket

e GCP Bucket where Cloudockit should store the
documents generated.

0+4XXXX+/k/MzQ",

4

": "XXXdockit",

INSTALLATION & CONFIGURATION GUIDE 24

Example of Payload for an Azure environment scan:

"ApiKey": "xxxx",

"TenantID": "X2.onmicrosoft.com",
"AppClientIdForAutomation": "XXXXX",
"AppClientKeyForAutomation": "mln/XXXXX=",
"SubscriptionID": "XXX",
"AzureStorageNameForDropOff": "XXX",
"ADKCloudType": "Azure"

Example of Payload for an GCP environment scan:

"ApiKey": "xxxx",

"GCPServiceAccountCredentials": {"type":
"service account","project id": ""cdkXXXX"",""private key id"":
""XXXXX"",""private_key"": " ———— BEGIN PRIVATE KEY-----
"NMMITEVQIXXXXXZGy5PArvVQS"n2buDJi0URXCKoeWnukGOC10fHIP8rFK6+XXXXXX+kIJmOY
xuFOwxdbgpS1n38mQyez7EK"nObnp9wP05ynOxKXJqdx0rlk="n----- END PRIVATE
KEY-—-——-- "n"",""client email"":

""XXXXQ@cdkprojectl.iam.gserviceaccount.com"",""client id"":
n "XXXXX" ", " "auth uri" " :
""https://accounts.google.com/o/oauth2/auth"", ""token uri"":

""https://ocauth2.googleapis.com/token"",""auth provider x509 cert url""

""https://www.googleapis.com/ocauth2/vl/certs"",""client x509 cert url":
""https://www.googleapis.com/robot/vl/metadata/x509/test-
XXXX.iam.gserviceaccount.com"}, "SubscriptionID": "XXXX",
"AzureStorageNameForDropOff": "XXXX",
"ADKCloudType": "GCP"

INSTALLATION & CONFIGURATION GUIDE 25

Step H — Test the document generation

Once all the tests above have been done, you can start the document generation.
To do that, you need to use the /StartDocumentGeneration endpoint.

First, you need to ensure that you specify the same values as the above steps for CheckLicenseStatus
and TestAuthentication endpoints.

Then, you need to specify additional values based on the type of document you want to generate and
which option you would like to use.

You get a list of all options from the properties list at the bottom of the screen:

Properties - Documentation

Show| 10 |entries

Value must be one of
Category Title Internal Name to use Description Type the following

Authentication GCl count JSON Credentials GCPServiceAccount)SON Specify i ccount JSON credentials to use. This is mandatory when using the AP for GCP String
dentials

Authentication Tenant ID TenantlD Specify your Azure Active Directory Tenant ID String

Authentication Azure AD Application Client ID AppClientidForAutomation cify the AAD App Client ID to use for the authenti is mandatory when using the API for Azure String
Authentication Azure AD Application Secret Key AppClientKeyForAutomation cify the AAD App Key to use for the authe . This is mandatory when using the API for Azure String
Authentication AWS A AW Keyld 1D to use. This is mandatory when using the API for AWS String
Authentication ret Access Key to use. This is mandatory when using the API for AWS String
Authentication String
Billing Dataset that contains the billing data GCPBigQueryDataSet Specify the name of the BigQuery Dataset that co illing data String
Billing Table that contains the billing data GCPBigQueryTable cify the name of the BigQuery Table that contains the billing data. String

Billing Billing Type BillingOfferiD Specify the type of billing to use (Standard, EA or CSP) String

Showing 1 to 10 of 236 entries ‘ Previous | 1 | 2

As there are many options that you can provide, we strongly advise that you use Cloudockit Website to
generate the JSON file with the options.

One of the options that is particularly useful in this scenario are the CallbackURL and
CallBackUrIRequired parameters that gives you the ability to be notified once document generation
have been done.

When you hit Execute, you get the state URL of the current document generation:

Server Response
Code Details
202 Response body

"data": {
"stateUrl™: “https://amazondockit.s3.us-west-2_amazonaws.com/34"~ 77 e “Meg512af@3d8fcfe32-state. json?X-Amz-Expires=1728008X-Amz -Algorit

2/s3/aws4_request&X-Amz-Date=-20201102T19252578X - Amz - SignedHeaders=hostBX-Amz - 5ignature=5a37e76cf072ab266fa2Bf 423267 f01c8fb494b7b37eB02604Fd5bO35ba2 fba" ,
"processId™: 8420
b
"message”: "Documentation generation was successfully started”

}

For Payload example, you can simply re-use the previous ones.

INSTALLATION & CONFIGURATION GUIDE 26

Step | — Manage your document generation

The Cloudockit API offers two endpoints to facilitate the management of document generation.

Please note that for these endpoints, you need to specify an Admin APl Key for the ApiKey value.

/ListDocumentGeneration

This will allow you to see which scans are running. It gives you the list of running processes with their
Process ID and State:

Server Response

Code Details
Response body

{
“data™: {
"processes™: [
i
"stateURL™: "https://famazondockit.s3.us-west-2.amazonaw
2/s3/aws4_requesti8X-Amz-Date=20201102T1925257&X-Amz -SignedHeade
"processID": 8428

/StopDocumentGeneration

This endpoint is used to kill a running document generation.

Name

Value

DockerProcessToKill Value of the process ID to kill

It will reply with a confirmation message that the process has been killed.

Server Response
Code Details
Response body

{

"data™: {
"processKilled”: true
},
"message”: "Process was killed”

}

INSTALLATION & CONFIGURATION GUIDE 27

Annex — Deploy multiple instances of Cloudockit Container

Cloudockit can be deployed in multiple instances in scenarios like this one:

)

App Gateway

waw

ingress-nginx-

Cloudockit-pod- Cloudockit-pod- Cloudockit-pod-
1 2 3

cloudockit

If you plan to use Cloudockit Container in a multi-pods environment, you need to configure some extra
components. If you plan to use Cloudockit Containers in multiple instances with sticky session (for
example App Services with a Traffic Manager), you do not need those extra components.

Here are the components that you need to configure.

INSTALLATION & CONFIGURATION GUIDE 28

Step 1 — Create / Configure Azure Key Vault

To encrypt the anti-forgery keys used by ASPNETCore, an Azure Key Vault is required. You can create a
new Azure Key vault or reuse an existing one.

Once you have the Azure Key Vault, you need to create a Key named dataprotection

cdkcontainerkeyvault | Keys

Key vault

2 Search (Ctrl+/) ‘ & = Generate/Import r:_:-. Refresh 7 Restore Backup /} Manage deleted keys

@ .
S Overview
Name Status

Activity log)
dataprotection ~* Enabled

Access control (IAM)

Tags

2 ® F @

Diagnose and solve problems

Events

Settings

Keys

Please ensure that the Key have the following Permitted Operations (by default permissions)

Permitted operations

Encrypt
Decrypt
Sign
Verify
Wrap Key

Unwrap Key

Once you have done that, you need to create an Azure App Registration that will have access to this key.
(you can also reuse the Azure AD App that you have created in the steps to configure Cloudockit Web Ul
if you prefer)

To do that, create a new App Registration (leave default settings) and note the Client ID and Client
Secret as you will need that in the next steps.

INSTALLATION & CONFIGURATION GUIDE 29

Go back to the Azure Key Vault and give the Permissions to Unwrap Key / Wrap Key to the App that you

just created

cdkcontainerkeyvault | Access policies

Key vault

P Search (Ctrl+/)

| «

Overview
Activity log
Access control (IAM)

Tags

% & P I

Diagnose and solve problems
Events
Settings
Keys
Secrets
k=l Certificates
Access policies
[, Networking

O Secunty

Enable Access to

.
() Refresh

\:‘ Azure Virtual Machines for deployment @

\:‘ Azure Resource Manager for template deployment (O

\:| Azure Disk Encryption for volume encryption &

Permission model

+ Add Access Policy
Current Access Palicies

Name

APPLICATION

=
(®) Vault access policy

(O azure role-based access control

Email

Cloudockit - Container Key Vault App

\i‘ Selecta

(] import -
\:‘ Delete

\:‘ Recover

\:‘ Backup

D Restore
Cryptographic Operations
\:‘ Decrypt

\:‘ Encrypt

Unwrap Key

Wrap Key

D Verify

\:‘ Sign

Privileged Key Operations

\:‘ Purge

nissi

I 2 selected

v I ‘ 0 selected

Step 2 — Configure Azure Redis Cache

As sessions can sprawl to multi pods, Azure Redis Cache is required to have consistent cache across all

nodes.

Create a new Azure Cache for Redis (you can also reuse an existing one if you prefer) and select the
Basic CO (250MB Cache) as only small elements will be cached. Ensure that you select a region that is
close to the one where Cloudockit will run for performance optimization.

Once created, take note of the Redis Connection String.

Step 3 — Define the Environment Variables required to run the Cloudockit Container

In addition to the environment variables defined in the step above, you now need to add the following

environment variables.

Name

DataProtection__EncryptionKeyUrl

Description

URL of the key vault Key that you have
created. You need to specify the Full Path

to the key, not only the key vault.

Example
https://cdkcontain
erkeyvault.vault.az
ure.net/keys/data
protection

INSTALLATION & CONFIGURATION GUIDE 30

DataProtection__VaultClientid Id of the Azure AD App that has privileges = 760fb963-57a4-

to Wrap / Unwrap key 2303-1450-
1b2dab513854
DataProtection__VaultSecret Secret of the Azure AD App SF7Q~NvuAYKF6.1B
Fidewdewd
CacheSettings__UseRedis Set to true to use redis instead of true
memory cache
ConnectionStrings__Redis Connection String to the Redis cdkmultipods.redis

.cache.windows.ne
t:6380,password=x
x=,ssl=True,abortC
onnect=False

For reference, here is a sample yaml file to deploy that configuration

: apps/vl
: Deployment

: cloudockit

: cloudockit

: cloudockit
: cloudockit
: cdkmultipods.azurecr.io/cdk-web-linux:dev
: 80
: DockerStorageCloudProvider

"Azure"
"DockerStorageAzureCnxString"

"DefaultEndpointsProtocol=https;AccountName=cloudockitcontainerdebug;AccountKey=x
xxx==; EndpointSuffix=core.windows.net"
= : AzureADTenant
"umaknowdev.onmicrosoft.com"
: AzureADAppID
"95482025 - xxxx"

INSTALLATION & CONFIGURATION GUIDE 31

: AzureADAppKey
"WEUXFqC~xxxx"
: Data__ ProtectionEncryptionKeyUrl

//cdkcontainerkeyvault.vault.azure.net/keys/dataprotection”
- : DataProtection_ VaultClientId

"760fb9xxxx"

: DataProtection__ VaultSecret
"VSF7xxxx"

: CacheSettings_UseRedis
"true"

: ConnectionStrings__ Redis

"cdkmultipods.redis.cache.windows.net:6380, password=xxxxk9g=,ss1l=True, abortConnec
t=False"
: APPINSIGHTS INSTRUMENTATIONKEY
"cO7069xxxx"
: TriggerDeployCount
ng

vl
Service

cloudockit
: ClusterIP

80

cloudockit

INSTALLATION & CONFIGURATION GUIDE 32

Annex - AWS Container use-cases

Introduction

This annex describes the different use-cases currently available for Cloudockit Container,
covering the APl and the WebUI host modes, for scenarios such as scanning multiple accounts,
using roles, keys, optional drop-off storage. The setups required at the Cloud platform level are
listed for each use-case.

AWS ECS Container

To run Cloudockit Container in AWS, the ECS container should already be setup.

A — Scanning multiple AWS accounts using Cross-Account role

Using Cloudockit Container API, it is possible to scan multiple accounts using the Cross-Account Role
functionality.

The objective is to give the possibility to a user located in the source account to scan other AWS
accounts, by assigning that user a role allowing them to access the target account(s) in read-only mode.
In the following example, ECS Task “EcsTask” located in the source account with account ID “AccountA”
wants to scan the resources in the target accounts with account IDs “AccountB”, “AccountC”, etc.

a. Setup in AWS Console for the role to scan multiple accounts

1. Create a role to attach to the ECS Task Definition running Cloudockit.
In the source account where the ECS is running Cloudockit, go to the IAM service, create a new role
named (for example) : EcsTaskRoleForCdk
e Permissions : Attach the following permission policies
o EcsCanAssumeAnyRole (Customer Managed)
Create a new permission policy named EcsCanAssumeAnyRole with the following JSON:

"Version": "2012-10-17",
"Statement": {
"Effect": "Allow",
"Action": "sts:AssumeRole",
"Resource": "*"

}
e Trusted entities : Attach the following Trust Relationship JSON in the role’s trusted entities

INSTALLATION & CONFIGURATION GUIDE 33

"Version": "2012-10-17",
"Statement": [{
"Effect": "Allow",
"Principal": {
"Service": "ecs-tasks.amazonaws.com"
by

"Action": "sts:AssumeRole"

}

e Inthe “EcsTask” Task Definition creation process, attach the created role to the ECS Task
Definition (select it in the ECS Task Definition, in dropdown “Task Role”).

2. Create the Multi-Account scan role
In this step we need to define the role which is going to be used in the API to scan all the accounts.

Make sure you have the following setup in every account to scan (source and targets).
e Create a new role named (for example) : MultiAccountScanRole
e Permissions : Attach the following permission policies to MultiAccountScanRole
o ReadOnlyAccess (AWS managed - job function)
o CdkS3BucketAccessPolicy (Customer Managed)
Create a new permission policy named CdkS3BucketAccessPolicy with the following
JSON:

"Version": "2012-10-17",
"Statement": [{
"Sid": "VisualEditorO",
"Effect": "Allow",
"Action": [
"s3:GetBucketLocation",
"s3:GetObject",
"s3:ListBucket",
"s3:PutBucketCORS",
"s3:PutObject",
"s3:DeleteObject"
1,
"Resource": [
"arn:aws:s3:::*%",

"arn:aws:s3:::*x/*"

INSTALLATION & CONFIGURATION GUIDE

34

e Trusted entities :
MultiAccountScanRole needs to know the calling entity, which includes the source account id
(AccountA) of the calling role, and the role name, which is EcsTaskRoleForcdk.
To do that, attach the following Trust Relationship JSON in the role’s Trusted entities.
{

"Version": "2012-10-17",
"Statement": [{
"Effect": "Allow",
"Principal": {
"AWS": [

"arn:aws:iam: :AccountA:role/EcsTaskRoleForCdk"

b
"Action": "sts:AssumeRole",
"Condition": {}

H]

b. Setup for the API Settings to use

In the Cloudockit API, in the “StartDocumentGeneration” tab, make sure to set the following settings :
e Settings defining the accounts to scan :
"SubscriptionId" : "AccountA"
"AWSRoleToAssume" : "MultiAccountScanRole"
"SelectedSubscriptionsIds": [
"AccountA",
"AccountB",

"AccountC"

o To drop-off the generated documents in the S3 bucket located in "AccountA":
"AzureStorageNameForDropOff": "NameOfYourS3BucketInAccountA"

e To drop-off the generated documents in the S3 bucket located in another account (in
"AccountB" for example):

"AzureStorageNameForDropOff":

"arn:aws:s3::AccountB: NameOfYourS3BucketInAccountB"

e To have the information of all scanned accounts displayed in the same document :
"GenerateSingleDocForAllSubscriptions": true

Otherwise, by default, the documents will be dropped in the storage account you specify, with a
different folder for each account.

B — Using the container with the ECS Task Role instead of IAM user keys

If you don’t want to use AccessKeylD/SecretAccessKey when setting up your container, you can use the
ECS Task Role assigned to your container.

INSTALLATION & CONFIGURATION GUIDE 35

When creating the Task Definition, instead of setting the Environment Variables
DockerStorageAWSAccessKeyId and DockerStorageAWSSecretAccessKey

You can set the Environment Variable :

DockerStorageUseAwsRole = True

Using this option has the following impact :

e The container will access the default container storage (the storage containing the container
license file) using the ECS Task role assigned to the container. This will be mainly used for
validating the license, reading the user settings file, and getting the saved schedules.

o The scan will still be performed using either the Keys or Role To Assume authentication options :
o API Settings : AccessKeylD/SecretAccessKey
o APl Settings : AWSRoleToAssume. You can use any role with ReadOnlyAccess Policy
(including the role assigned to the ECS if you want).
If you choose the AWSRoleToAssume option, you should still enter random values for
the AccessKeylD/SecretAccessKey variables, it’s a front-end validation glitch that will be
fixed in the future.

a. Setup in AWS Console for the ECS Task Role
The ECS Task Role needs to be created with the following permissions :

e Create a new role named (for example) : EcsTaskRoleContainerldentity
e Permissions : Attach the following permission policies to EcsTaskRoleContainerldentity
o ReadOnlyAccess (AWS managed - job function) (necessary if you want to scan your
environment using this role)
o CdkS3BucketAccessPolicy (Customer Managed)
Create a new permission policy named CdkS3BucketAccessPolicy with the following
JSON:

INSTALLATION & CONFIGURATION GUIDE 36

"Version": "2012-10-17",
"Statement": [{
"Sid": "VisualEditorO",
"Effect": "Allow",
"Action": [
"s3:GetBucketLocation",
"s3:GetObject",
"s3:ListBucket",
"s3:PutBucketCORS",
"s3:PutObject",
"s3:DeleteObject"
1,

"Resource": [
"arn:aws:s3:::%",
"arn:aws:s3:::i*/*"

o AllowEcsDescribeTask (Customer Managed)
Create a new permission policy named AllowEcsDescribeTask with the following JSON:

"Version": "2012-10-17",

"Statement": [{
"Effect": "Allow",
"Action": [

"ecs:DescribeTasks",
"ecs:DescribeTaskDefinition"

1,

"Resource": "*"

o EcsCanAssumeAnyRole (Customer Managed)
Create a new permission policy named EcsCanAssumeAnyRole with the following JSON:

"Version": "2012-10-17",

"Statement": {

"Effect": "Allow",
"Action": "sts:AssumeRole",
"Resource": "x"

INSTALLATION & CONFIGURATION GUIDE 37

e Trusted entities : attach the following Trust Relationship JSON in the role’s trusted entities
{

"Version": "2012-10-17",
"Statement": [{
"Effect": "Allow",
"Principal": {
"AWS":
"arn:aws:iam: :AccountA:role/EcsTaskRoleContainerIdentity",
"Service": "ecs-tasks.amazonaws.com"
by
"Action": "sts:AssumeRole"

}]

C —Running a scheduled scan in AWS using ECS container.

In this example, we want to run a scheduled scan from within our AWS environment. The container
scheduler (the small container triggering the scheduled scans) and the container running the scan are
both hosted in AWS.

a. Saving the schedule

The schedule is saved using the Web Interface (Container WebUI), we need to add the Environment
Variable referring to the AWS container default S3 bucket which will now contain the saved schedules.

The 2 following steps are necessary if you are using the Container WebUI interface running in Azure to
save the schedule.

1. Set the Environment Variable
e (o to a previously setup container in Azure (App service) or setup a new one (ref.
ContainerGuide_Azure)
e Inthe corresponding App Service
o left panel = section Settings
o Configuration
o Click on + New application setting
= Name : DockerStorageNameForAWSScheduler
= Value : NameOfYourS3Bucket (write the name of the AWS container default S3
Bucket which contains the license file for the container running AWS)
o Save

2. Save the AWS Schedule
Start your Azure Web App, follow the login steps and save the schedule.

e Sign in with Azure AD

e Select “AWS”, and enter the Access Key ID & Secret Access Key, log in.

e Once logged-in, set the settings you want for your schedule (make sure the IAM user with the
logged-in AccessKeylD/SecretAccessKey have read access to the target account to scan)

INSTALLATION & CONFIGURATION GUIDE 38

e Drop-off tab : Your Storage : enter the name of any S3 bucket where you want your documents
to be dropped-off (accessible with the logged-in credentials) and validate.
e Scheduling tab:
o Inthe Schedules drop-down, select “Add new schedule...”
o Enter the Schedule’s Name & CRON (copy/paste CRON expression from
http://www.cronmaker.com)
o Enter the API Key used for the AWS Container (corresponding to the license found in the
default S3 bucket)
o Save Schedule

Your schedule file is now saved in your AWS Container default S3 bucket.

3. Run the schedule in AWS
In this final step, we are going to set the container scheduler in AWS (to trigger the scans) and have the
scan executed with the container set up in AWS as well.

3.1. Set you container scheduler
e Create a new task definition/revision for the container scheduler.

In this example we will create a new Task Definition EcsSchedulerUsingKeys for the container
scheduler, using AccessKeylD/SecretAccessKey environment variables (you can also set it with ECS
Task Role instead of the keys, ref. Use-case B)

Launch Type : AWS Fargate | OS : Linux/X86_64
Task size : 1 vCPU & 2GB Memory
Task Roles

e Forthe ECS Task Role, attach a role (EcsSchedulerRole) with the following custom policies :
o EcsCanAssumeAnyRole (Customer Managed) (ref. previous uses-cases)
o CdkS3ReadAccessPolicy (Customer Managed)

INSTALLATION & CONFIGURATION GUIDE 39

http://www.cronmaker.com/

"Version": "2012-10-17",
"Statement": [{
"Sid": "VisualEditorO",
"Effect": "Allow",
"Action": [
"s3:GetBucketLocation",
"s3:GetObject",
"s3:ListBucket",
"s3:PutBucketCORS"
1,

"Resource": [
"arn:aws:s3:::*",
"arn:aws:s3:::*/*"

1}

}
The following Trust relationships :

{

"Version": "2012-10-17",
"Statement": [{
"Effect": "Allow",
"Principal": {
"Service": "ecs-tasks.amazonaws.com"
by
"Action": "sts:AssumeRole"

}H]

For the Task Execution Role, attach a role with the necessary permissions to access your secret
manager to retrieve the secrets required to download the Cloudockit Container image (as
described in ContainerGuide_AWS) and to write the container logs (in order to display any
errors/warnings and to monitor the state of the schedules running).

Permissions - Policies to attach :

o CloudWatchLogsFullAccess (AWS Managed)
o GetMyRegistrySecretPolicy (Customer Managed)

INSTALLATION & CONFIGURATION GUIDE 40

"Version": "2012-10-17",

"Statement": [{
"Effect": "Allow",
"Action": [

"secretsmanager:GetSecretValue"

1,
"Resource": [
"ArnOfYourSecretFoundInSecretsManager"

The following Trust relationships :

{

"Version": "2012-10-17",
"Statement": [{
"Effect": "Allow",
"Principal™: {
"Service": "ecs-tasks.amazonaws.com"
s
"Action": "sts:AssumeRole"

Container details

Set the name, and the Image URI for the scheduler container image (URI ends with cdk-scheduler-
linux:latest), and enable Private registry authentication.

Environment Variables
Add the following Environment Variables :

e DockerStorageCloudProvider : AWS
e DockerStorageAWSBucketName : NameOfYourContainerDefaultS3Bucket (same as
DockerStorageNameForAWSScheduler setin 1. Set the Environment Variable)

e DockerUrlForSchedulingStarts : URLof the AWS container running the scan (APl Host —
e.g http://57.137.30.170/) — if this Environment Variable is not assigned in this step, it should

be set in the settings.json file found in the S3 bucket next to the license.json file.

INSTALLATION & CONFIGURATION GUIDE

http://57.137.30.170/

To allow the container scheduler to access the storage, you can either use IAM user access keys, OR the
ECS Task Role to access the storage account containing the schedules :

To use the IAM user access keys :

® DockerStorageAWSAccessKeyId . Access Key ID of the IAM user
e DockerStorageAWSSecretAccessKey : Secret Access Key of the IAM user

To use the IAM Role assigned to the ECS Task (Task Role) :

e DockerStorageUseAwsRole : True

In the case of using the IAM Role, the ECS Task Role previously created also needs to have the following
permission policy attached :

o AllowEcsDescribeTask (Customer Managed) (ref. a. Setup in AWS Console for the ECS
Task Role)

Modify the Trust relationship to add the ECS Task role’s arn in the Principal. It should look like this :

{

"Version": "2012-10-17",
"Statement": [{
"Effect": "Allow",
"Principal": {
"AWS": "arn:aws:iam::YourAccountId:role/EcsTaskRole",
"Service": "ecs-tasks.amazonaws.com"
by
"Action": "sts:AssumeRole"

}H]

Logging
In the Logging section, Enable “Use log collection”, use “Amazon CloudWatch”.
The container will automatically create a log group and write the logs.

Once the task definition is created, you can deploy and run it in your cluster.
Monitor the container logs to see the status of the scan (In the running scheduler’s container -> tab
IILOgSH)

INSTALLATION & CONFIGURATION GUIDE 42

Annex — Troubleshooting

Here are resolutions to common cases and how you can help find errors in Cloudockit Container.

If you activate Cloudockit Container Web Ul and noticed that in the upper right corner you have
a Welcome message without your name, please check the AAD Credentials in the settings file

If you are using Private endpoint for your App Service and Storage, please ensure that you
activate vNET integration so that the App Service can communicate with the Storage Account
You can specify an environment variable in your container named AppInsightKey that contains
an Azure App Insight Instrumentation key so that you can see the logs.

You can use the -logs.txt file in the storage that you have specified to see what is happening
during document generation.

If you get an error when the document generation starts, please ensure that you have Write
privileges to your storage account

If you see the message that the document generation is starting but do not see any progress,
please verify that you have a CORS rule for GET Verb and origin that is your Cloudockit container
website (should be done automatically).

If you get an exception when starting the container that says “APPCMD failed with error code
87”, check that the variables that you are providing do not contain quotes.

INSTALLATION & CONFIGURATION GUIDE 43

