
Enter the following redirect

`

GCP - INSTALLATION &

CONFIGURATION GUIDE

GENERATED BY:

GENERATED BY:

INSTALLATION & CONFIGURATION GUIDE 2

Contents

Introduction .. 3

Requirements .. 5

Step A – Create a Bucket and Get a License ... 6

Create a Bucket ... 6

Licensing .. 7

Create a service account to access the bucket ... 9

Step B – Create your container environment and Start your container ... 11

Create a Google Container Registry and Upload image ... 11

Create a Kubernetes Cluster ... 12

Deploy Cloudockit Container .. 14

Step C (Optional) – Configure Cloudockit Web UI .. 21

Step D (Optional) – Configure Cloudockit Container to support Scheduling. ... 26

Start Cloudockit Scheduler Container ... 26

Set Settings in the settings file .. 26

Step E (Optional) – Configure Cloudockit Container to support the creation of Compliance Rules, Tailored

Diagrams and Settings .. 27

Create (or re-use) an Azure Cosmos DB .. 27

Configure Cloudockit Container to use the Azure Comos DB ... 29

Step F – Understand Cloudockit API Container .. 30

Step G – Test your license ... 31

Activate and setup components for your license ... 31

Step H – Validate that you can authenticate to the environment that you want to scan 32

Step I – Test the document generation .. 34

Step J – Manage your document generation (Preview) ... 35

/ListDocumentGeneration .. 35

/StopDocumentGeneration .. 35

Annex – Deploy multiple instances of Cloudockit Container.. 36

Annex – Troubleshooting .. 38

INSTALLATION & CONFIGURATION GUIDE 3

Introduction

The purpose of this document is to provide the detailed steps to run and configure Cloudockit Docker

container image.

There are two types of images that you should run:

• cdk-web-linux that contain the Cloudockit API/Web interface. This is mandatory to run this

container.

• cdk-scheduler-linux that contain the Cloudockit Scheduling features. This is an optional

container you do not need to install if you do not want to use schedules.

The cdk-web image contains the Cloudockit API that you can call from your CI/CD processes or any other

process / scenario which fits your business needs.

In addition to the API, we have integrated the complete Cloudockit Web UI in the image so that you can

get all the features that you are accustomed to.

Cloudockit Docker container images provide you a way to run Cloudockit into your own isolated Cloud

environment and gives you the exact same features as Cloudockit Website and Cloudockit Desktop.

Here is the high-level overview of the solution :

The following hosting environments are currently supported:

• Web App for Containers on Azure - Recommended

• ECS (Elastic Container Services) on AWS

• ACI (Azure Container Instance) on Azure

• GKE (Google Kubernetes Engine) on GCP

A few important things to note:

• These configurations are for the hosting of the container, not for the environment that you scan

which means that you can scan a GCP project using the Cloudockit Container API even if the

container runs on Azure.

INSTALLATION & CONFIGURATION GUIDE 4

• Depending on the hosting option that you choose, there could be some limitations. Those

limitations are related to the hosting option and not the Cloudockit Container by itself. As an

example, ACI currently does not yet support private networking (virtual networks) for Windows

Based Container.

• The current document does not detail networking configuration like isolation/https setup as this

is highly depending on your internal setup.

• Container is currently designed to have one node running which should be more than enough to

generate all your documents you need.

• For production environment, we recommend 4vCPU + 8 Gb RAM

• Cloudockit Web UI only supports Azure AD as SSO authentication (Preview). If you do not set it

up, you will only be able to access the API portion.

The following sections contains the different steps to deploy the Cloudockit Docker container image on

the GCP Platform.

Here is an overview of the different steps you must do to deploy Cloudockit Container:

Step 1 - Create a Bucket and Get A License

• Create a Bucket

• Ask Cloudockit Support team for a license file

Step 2 - Create and Start Cloudockit Container (cdk-web)

• Retrieve the Cloudockit Container image

• Create the Cloudockit Container hosting environment with the Cloudockit
Container image

Step 3 (Optional) - Activate Cloudockit Container UI

• Create an Azure AD Application

Step 4 (Optional) - Activate the Scheduling feature (cdk-scheduler)

• Set the appropriate settings to activate scheduling

Step 5 ... - Do some tests

• Test the license validity

• Start some documentation

INSTALLATION & CONFIGURATION GUIDE 5

Requirements

To install Cloudockit Container in your environment, you will need:

• A Bucket

• A Container Registry

• A GKE Cluster

• An Azure Active Directory Application if you want to activate Cloudockit Container Web UI

(Optional)

INSTALLATION & CONFIGURATION GUIDE 6

Step A – Create a Bucket and Get a License

Create a Bucket

The first step to deploy Cloudockit Container is to create a Bucket in your GCP Project.

You need to ensure that the name that you provide matches the name provided to Cloudockit team as

license validation is done with the name of the bucket:

INSTALLATION & CONFIGURATION GUIDE 7

Click on Create (you can choose the location that you want and leave the default settings for the other

options)

The only requirement for the Bucket is that it is visible by the Container as the Container will

communicate with the Bucket to retrieve the configuration files.

This bucket will be used to store the following information:

• License file

• Users registered in the product

• Settings of the Container

• Schedules

• Other configurations like Compliance Rules, Tailored Diagrams

Licensing

Once you have created the bucket, you need to send the bucket name to Cloudockit Support Team

(support@cloudockit.com) so that they generate a license file.

When you receive the license file, you will also get the following information:

• Product Key: used by your users who will connect to the Web UI.

• Admin Product Key: used by your admin users who will connect to the Web UI. This allows to

access additional features.

• API Key: used when you want to trigger API calls

• Admin API Key: used when you want to trigger API calls. Compared to the API Key, it gives you

extra features like the ability to list the Document Generation currently running and to stop

running documents

mailto:support@cloudockit.com

INSTALLATION & CONFIGURATION GUIDE 8

Once you receive the License file (license.json), you need to upload that file into a folder named

cloudockitinternal in the bucket (this folder will be automatically created for you if you have already

started the container otherwise you need to create it manually):

Then, upload the license.json file into that folder:

INSTALLATION & CONFIGURATION GUIDE 9

Create a service account to access the bucket

As the container needs to access the bucket to read the license file, you need to create a new service

account:

From IAM menu / Service accounts, create a new service account:

Generate a JSON Credential file for this service account as this will be required in the following step:

INSTALLATION & CONFIGURATION GUIDE 10

Open the JSON generated file and remove all Carriage Return characters to make it a single line.

Save the JSON cred file for further use.

From the bucket, give the service account the Storage Admin role on the bucket:

INSTALLATION & CONFIGURATION GUIDE 11

Step B – Create your container environment and Start your container

Once you have created your Bucket, you need to create your container environment and start the

container.

Create a Google Container Registry and Upload image

First, you need to upload the image provided by Cloudockit support team to your own Google Container

Registry.

Please note the URL of the uploaded image as you will need that in the next step. Our example is using

gcr.io/projectCDKContainer/cloudockitapi

As an example, here is a script that you can use to pull the image from Cloudockit Repo and push that to

your GCP Container Registry:

#This script will download Cloudockit Container image and upload that to your Google Cloud Container Registry
#Please ensure that you have Docker installed to execute this script (required to pull/push Cloudockit
Container image to your GCP Registry)
#Please ensure that you have GCloud installed to execute this script (required to authenticate to your GCP
Registry)
#update the following values
$gcpProjectID = 'cdk-container-test'
$sourceRepoUser = #Login to Cloudockit Container registry. Please refer to the email you received
$sourceRepoPwd = '' #Password to Cloudockit Container registry. Please refer to the email you received

#$targetRepoUser = 'yourlogintoyourregistry' #Please go to your container registry and activate Admin user
#$targetRepoPwd = 'yourpasswordtoyourregistry'

#Internal values
$targetRepoURL = 'gcr.io/'+$gcpProjectID #This is the container registry where you want to upload. Basically
gcr.io/<PORJECT-ID>
$currentVersion = 'latest'
$type = 'linux'
$sourceRepoURL = 'cloudockitcontainerregistry.azurecr.io'

#connect to the Cloudockit Repository
docker login $sourceRepoURL -u $sourceRepoUser -p $sourceRepoPwd

#Pull the cloudockit image
docker pull $sourceRepoURL/cdk-scheduler-$type':'$currentVersion
docker pull $sourceRepoURL/cdk-web-$type':'$currentVersion

#Login to the target Repository
gcloud auth login
gcloud config set project $gcpProjectID
#docker login $targetRepoURL -u $targetRepoUser -p $targetRepoPwd

#Tag the docker image and push it to the registry
docker tag $sourceRepoURL/cdk-web-$type':'$currentVersion $targetRepoURL/cdk-web-$type':'$currentVersion |
docker push $targetRepoURL/cdk-web-$type':'$currentVersion
docker tag $sourceRepoURL/cdk-web-$type':'$currentVersion $targetRepoURL/cdk-web-$type':latest' | docker push
$targetRepoURL/cdk-web-$type':latest'
docker tag $sourceRepoURL/cdk-scheduler-$type':'$currentVersion $targetRepoURL/cdk-scheduler-
$type':'$currentVersion | docker push $targetRepoURL/cdk-scheduler-$type':'$currentVersion
docker tag $sourceRepoURL/cdk-scheduler-$type':'$currentVersion $targetRepoURL/cdk-scheduler-$type':latest' |
docker push $targetRepoURL/cdk-scheduler-$type':latest'

INSTALLATION & CONFIGURATION GUIDE 12

Then, validate that the images have been uploaded successfully:

Create a Kubernetes Cluster

First, you need to create a Kubernetes Cluster using Google Kubernetes Engine. You can use your own

procedure to do that or refer to Step 1: Create a GKE cluster | Apigee | Google Cloud.

Click on Create

https://cloud.google.com/apigee/docs/hybrid/v1.2/install-create-cluster

INSTALLATION & CONFIGURATION GUIDE 13

Choose a GKE Standard Cluster:

Enter the cluster name and appropriate region and then click on Create :

INSTALLATION & CONFIGURATION GUIDE 14

Then click on Create and wait for the cluster to be created:

Deploy Cloudockit Container

Click on Deploy :

Select the cdk-web-linux container:

INSTALLATION & CONFIGURATION GUIDE 15

Enter the following environment variables and click Done

Name Value

AppInsightKey (optional) An Azure App Insight Instrumentation Key for advanced
login

DockerStorageCloudProvider Specify if your Storage Account is stored in Azure, AWS
or GCP.
Possible Values are:

• Azure

• GCP

• AWS

DockerStorageGCPStorageName Enter the GCP Bucket Name

DockerStorageGCPStorageJSONCredentials Enter the JSON Credentials with Full Control on the GCP
Bucket

Please ensure that you have the complete JSON credentials on a one line for the Env variable

DockerStorageGCPStorageJSONCredentials.

INSTALLATION & CONFIGURATION GUIDE 16

Then, in configuration, enter the following information

Then, click Deploy:

INSTALLATION & CONFIGURATION GUIDE 17

Wait a few minutes and validate that the deployment is done:

Then, expose the container with port 80 (for test only, you should use https/443 with appropriate

certificates for production deployment):

Click on Actions / Expose:

INSTALLATION & CONFIGURATION GUIDE 18

Then, click Expose:

Ensure that you select service type = Load balancer if you want to have external communications

allowed to the cluster. If you select Cluster IP instead, ensure that you have internal network

connectivity property setup.

INSTALLATION & CONFIGURATION GUIDE 19

Then, from the exposing Services section, click on the EndPoint near the Load Balancer type and validate

that the container is up and running:

INSTALLATION & CONFIGURATION GUIDE 20

INSTALLATION & CONFIGURATION GUIDE 21

Step C (Optional) – Configure Cloudockit Web UI

Cloudockit Container supports a Web UI that allows users to authenticate by using Azure AD or Azure

User Authentication.

This Web UI supports Azure Active Directory as a first step to authenticate users.

Once connected, you will be able to connect to Azure, AWS and GCP using Service Accounts (Azure AD

App, GCP Service Credentials, AWS Access Keys).

To activate Azure AD Authentication, you need to follow these steps:

• Go to your Azure Active Directory

• Click on App Registration and then click New Registration

• Enter a Name (any name you want) and select Single Tenant

• Enter the following redirect URIs (reply url):
o https://<AppSvcName>.azurewebsites.net/LogIntoAzure/CatchCodeAzure

o https://<AppSvcName>.azurewebsites.net/LogIntoCDKWithAAD/CatchCode

where AppSvcName is the name of your App Service

INSTALLATION & CONFIGURATION GUIDE 22

Note: the interface will not let you enter the 2nd URL before clicking on Register so you’ll have to enter it

after registration, in the Authentication page:

INSTALLATION & CONFIGURATION GUIDE 23

Then, go to API Permissions, click on +Add a permission and select :

- Microsoft Graph, then Delegated permissions and then select User.Read:

- Azure Service Management, then Delegated permissions and then select user_impersonation:

INSTALLATION & CONFIGURATION GUIDE 24

Click Add permissions. You should now see the following :

Then, click on Grant Admin consent for Default Directory (if you don’t have the permissions to click on

Grant admin consent, please contact your IT admin to do it for you):

INSTALLATION & CONFIGURATION GUIDE 25

Then, take note of the client ID from the Overview tab and then go to Certificates & Secrets and

generate a new Client Secret, take note of it.

Update the settings file from your storage account (in the cloudockitinternal folder) with the value of

the previously created Azure AD Application:

{

"AzureADTenant": "mytenant.onmicrosoft.com",

"AzureADAppID": "zzzzz",

"AzureADAppKey": "zzzzz"

}

INSTALLATION & CONFIGURATION GUIDE 26

Step D (Optional) – Configure Cloudockit Container to support

Scheduling.

Cloudockit Container supports a Scheduling Web UI that allows users to choose when they want to

schedule the document generation.

To activate scheduling, you need to spin-up a new container based on the cloudockitscheduler image

and set the appropriate settings in your settings file.

Start Cloudockit Scheduler Container

You need to follow the same procedure as you did in the previous step to spin up a new Scheduling

container. You need to use the cloudockitscheduler image. This scheduler is basically reading the

schedules files created from the UI and calling the API according to the schedule.

Here are the settings for the container:

• CPU : 1+

• RAM : 1.5GB+

• No inbound networking is required

• Outbound networking needs to access to the storage account where are the settings are stored

and the API url where Cloudockit is deployed.

• The following 3 environment variables are required:

Name Value

DockerStorageCloudProvider Specify if your Storage Account is stored in Azure, AWS or GCP.
Possible Values are:

• Azure

• GCP

• AWS

DockerStorageGCPStorageName Enter the GCP Bucket Name

DockerStorageGCPStorageJSONCredentials Enter the JSON Credentials with Full Control on the GCP Bucket

DockerUrlForSchedulingStarts Enter the URL of your API that host Cloudockit like:
https://testcdkapi.azurewebsites.net/

Set Settings in the settings file

To activate the scheduling, you need to update the settings file from your storage account (in the

cloudockitinternal folder) to specify the URL of your Cloudockit Container:

{
"DockerUrlForSchedulingStarts" : "https://mycloudockitcontainer"
}

This information will be used by Cloudockit Scheduling feature to specify which Web API to call.

INSTALLATION & CONFIGURATION GUIDE 27

Step E (Optional) – Configure Cloudockit Container to support the

creation of Compliance Rules, Tailored Diagrams and Settings

Cloudockit Container now supports the creation of new Compliance Rules, new Tailored Diagram and

new Settings.

This feature requires that you deploy an Azure Cosmos DB to save the Compliance Rules and Tailored

Diagram.

There are two steps required:

• Create (or re-use) an Azure Cosmos DB

• Add environment variables to the Cloudockit Container to specify which Cosmos Database to

use

Create (or re-use) an Azure Cosmos DB

From the Azure Portal, create a new Cosmos DB: (You can skip those steps if you already have a Cosmos

DB that you want to reuse)

• Create a Cosmos DB

INSTALLATION & CONFIGURATION GUIDE 28

• Choose Azure Cosmos DB for NoSQL for the type

Once the Cosmos DB is created, you need to create a new Database named cloudockit :

INSTALLATION & CONFIGURATION GUIDE 29

Configure Cloudockit Container to use the Azure Comos DB

To ensure that the container can connect to the Database, you need to start the container and specify

the following 2 required environment variables:

Name Value

CosmosDb__DatabaseName Enter the name of the Database that you have created in the
previous step (cloudockit in the example)

ConnectionStrings__CosmosDb Azure CosmosDB Connection string

INSTALLATION & CONFIGURATION GUIDE 30

Step F – Understand Cloudockit API Container

Once you have installed the Cloudockit Container, you can navigate to the Container Home Page and

you will see the following screen.

It gives you the option to test the different endpoints offered by Cloudockit API.

Please note that you can do everything from command lines/scripts and not use the interface if you

prefer.

For simplicity of usage, all the endpoint are POST endpoints. Not all settings are mandatory for each

endpoint, and you can refer to that section to see which endpoints require which parameters.

INSTALLATION & CONFIGURATION GUIDE 31

Step G – Test your license

Activate and setup components for your license

Once you get the API Key from Cloudockit team and you have the appropriate credentials for the license

validation, you can check that your API Key is working by using the /CheckLicenseStatus endpoint.

First, navigate to the home page of the container and click on CheckLicenseStatus and Try it now. Then,

replace the following values in the JSON that you are sending to Cloudockit API:

{

 "ApiKey": "API Key provided by Cloudockit Team"

}

Click on Execute.

You should receive the following response body:

INSTALLATION & CONFIGURATION GUIDE 32

Step H – Validate that you can authenticate to the environment that you

want to scan

Once the license validation is successful, you need to test that the authentication to the environment

you want to scan is working.

To do that, you need to use the /TestAuthentication endPoint.

First, you need to ensure that you specify the values from the above Step 2 for license validation.

Then, you need to specify the following additional values:

Name Value

ADKCloudType Azure/AWS/GCP depending on the platform that you
want to scan.

SubscriptionID Id/Alias of the subscription (Azure) or account (AWS)
or project (GCP) that you want to scan.

(for
AWS)

AWSAccessKeyId AWS Access Key

AWSSecretAccessKey AWS Secret Access Key

(for
Azure)

TenantID Tenant name of the Azure Subscription to scan

AppClientIdForAutomation AAD App ID for the scan

AppClientKeyForAutomation AAD App Key for the scan

(for
GCP)

GCPServiceAccountCredentials Content of the JSON Service Credential file

AzureStorageNameForDropOff Do not change the name of the parameter for AWS,
this is still call AzureStorageNameForDropOff
You should specify one of this value:

• the Azure Storage Account Name (it can be
storage short name that is in the same tenant
as the subscription that you scan or the
complete Azure Storage Account Connection
String)

• AWS S3 bucket

• GCP Bucket where Cloudockit should store the
documents generated.

Example of Payload for an AWS environment scan:

{

 "ApiKey": "xxxx",

 "AWSAccessKeyId": "XXXX",

 "AWSSecretAccessKey": "8PoBo+4XXXX+/k/MzQ",

 "SubscriptionID": "34XXXX2",

 "AzureStorageNameForDropOff": "XXXdockit",

 "ADKCloudType": "AWS"

}

INSTALLATION & CONFIGURATION GUIDE 33

Example of Payload for an Azure environment scan:

{

 "ApiKey": "xxxx",

 "TenantID": "X2.onmicrosoft.com",

 "AppClientIdForAutomation": "XXXXX",

 "AppClientKeyForAutomation": "mln/XXXXX=",

 "SubscriptionID": "XXX",

 "AzureStorageNameForDropOff": "XXX",

 "ADKCloudType": "Azure"

}

Example of Payload for an GCP environment scan:

{

 "ApiKey": "xxxx",

 "GCPServiceAccountCredentials": {"type":

"service_account","project_id": ""cdkXXXX"",""private_key_id"":

""XXXXX"",""private_key"": ""-----BEGIN PRIVATE KEY-----

"nMIIEvQIXXXXXZGy5PArVQS"n2buDJi0URXCKoeWnukG9Cl0fHlP8rFK6+XXXXXX+kJm0Y

xuFOwxdbgpS1n38mQyez7EK"nObnp9wP05ynOxKXJqJx0r1k="n-----END PRIVATE

KEY-----"n"",""client_email"":

""XXXX@cdkproject1.iam.gserviceaccount.com"",""client_id"":

""XXXXX"",""auth_uri"":

""https://accounts.google.com/o/oauth2/auth"",""token_uri"":

""https://oauth2.googleapis.com/token"",""auth_provider_x509_cert_url""

:

""https://www.googleapis.com/oauth2/v1/certs"",""client_x509_cert_url":

""https://www.googleapis.com/robot/v1/metadata/x509/test-

XXXX.iam.gserviceaccount.com"}, "SubscriptionID": "XXXX",

 "AzureStorageNameForDropOff": "XXXX",

 "ADKCloudType": "GCP"

}

INSTALLATION & CONFIGURATION GUIDE 34

Step I – Test the document generation

Once all the tests above have been done, you can start the document generation.

To do that, you need to use the /StartDocumentGeneration endpoint.

First, you need to ensure that you specify the same values as the above steps for CheckLicenseStatus

and TestAuthentication endpoints.

Then, you need to specify additional values based on the type of document you want to generate and

which option you would like to use.

You get a list of all options from the properties list at the bottom of the screen:

As there are many options that you can provide, we strongly advise that you use Cloudockit Website to

generate the JSON file with the options.

One of the options that is particularly useful in this scenario are the CallbackURL and

CallBackUrlRequired parameters that gives you the ability to be notified once document generation

have been done.

When you hit Execute, you get the state URL of the current document generation:

For Payload example, you can simply re-use the previous ones.

INSTALLATION & CONFIGURATION GUIDE 35

Step J – Manage your document generation (Preview)

The Cloudockit API offers two endpoints to facilitate the document generation management.

Please note that for those endpoints, you need to specify an Admin API Key for the ApiKey value.

/ListDocumentGeneration

This will allow you to see which documents are running. It gives you the list of running processes with

their Process ID and State:

/StopDocumentGeneration

This endpoint is used to kill a document generation running.

Name Value

DockerProcessToKill Value of the process ID to kill

It will give you back a confirmation message that the process has been killed:

INSTALLATION & CONFIGURATION GUIDE 36

Annex – Deploy multiple instances of Cloudockit Container

Cloudockit can be deployed in multiple instances in scenarios like this one:

cloudockit

Cloudockit

App Gateway

ingress-nginx-

controller

Cloudockit-pod-

1

Cloudockit-pod-

2

Cloudockit-pod-

3

If you plan to use Cloudockit Container in a multi-pods environment, you need to have a mounted

volume that will be accessible from all pods where the data protection key and certificates will be

stored.

You need to define the following environment variables:

Name Description Example

DataProtection__KeysStorePath Path of the
volume
mounted
on all pods

/etc/cloudockit

DataProtection__Certificates__Current__FileName Filename
of the
certificate

mycert.pfx

INSTALLATION & CONFIGURATION GUIDE 37

used to
encrypt the
key

DataProtection__Certificates__Current__Password Password
of the
certificate
used to
encrypt the
key

xxxxx

DataProtection__Certificates__Previous__FileName Filename
of the
certificate
used to
encrypt the
key (for
rotation)

Mycert2.pfx

DataProtection__Certificates__ Previous
__Password

Password
of the
certificate
used to
encrypt the
key (for
rotation)

xxxx

INSTALLATION & CONFIGURATION GUIDE 38

Annex – Troubleshooting

Here are resolutions to common cases and how you can help find errors in Cloudockit Container.

• If you activate Cloudockit Container Web UI and noticed that in the upper right corner you have

a Welcome message without your name, please check the AAD Credentials in the settings file

• If you are using Private endpoint for your App Service and Storage, please ensure that you

activate vNET integration so that the App Service can communicate with the Storage Account

• You can specify an environment variable in your container named AppInsightKey and that

contains an Azure App Insight Instrumentation key so that you can see the logs.

• You can use the -logs.txt file in the storage that you have specified to see what is happening

during document generation.

• If you get an error when the document generation starts, please ensure that you have Write

privileges to your storage account

• If you see the message that the document generation is starting but do not see any progress,

please verify that you have a CORS rule for GET Verb and origin that is your Cloudockit container

website (should be done automatically).

• If you get an exception when starting the container that says “APPCMD failed with error code

87”, check that the variables that you are providing do not contain quotes.

